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ABSTRACT

Motivation: Major tumor sequencing projects have been conducted
in the past few years to identify genes that contain ‘driver’ somatic
mutations in tumor samples. These genes have been defined as
those for which the non-silent mutation rate is significantly greater
than a background mutation rate estimated from silent mutations.
Several methods have been used for estimating the background
mutation rate.

Results: We propose a new method for identifying cancer driver
genes, which we believe provides improved accuracy. The new
method accounts for the functional impact of mutations on proteins,
variation in background mutation rate among tumors and the
redundancy of the genetic code. We reanalyzed sequence data for
623 candidate genes in 188 non-small cell lung tumors using the new
method. We found several important genes like PTEN, which were
not deemed significant by the previous method. At the same time,
we determined that some genes previously reported as drivers were
not significant by the new analysis because mutations in these genes
occurred mainly in tumors with large background mutation rates.
Availability: The software is available at: http://linus.nci.nih.gov/
Data/YounA/software.zip

Contact: rsimon@mail.nih.gov

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Major tumor sequencing projects (Ding et al., 2008; Greenman et al.,
2007; Sjoblom et al., 2006; Wood et al., 2007) have been conducted
and initiated in the past few years to identify genes that are frequently
mutated and thereby are expected to have primary roles in the
development of tumor. One of the challenges in interpreting this data
is distinguishing driver mutations, which have a role in oncogenesis
or in the cancer phenotype from passenger mutations that accumulate
through DNA replication but are irrelevant to tumor development. To
find these driver genes, each gene is tested for whether its mutation
rate is significantly higher than the background (or passenger)
mutation rate. The background mutation rate is estimated based
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on silent mutations which do not change amino acid encoding and
which are therefore considered to be passenger mutations.

All current methods for estimating the background mutation
rate are based on a common approach in which background non-
silent mutation rate py is estimated as a product pgR, where the
background silent mutation rate pg is obtained by dividing the
observed number of silent mutations by the number of base pairs
sequenced and R is the average ratio of the number of potential
non-silent mutations to the number of potential silent mutations.
Having estimated the background non-silent mutation rate py, each
gene can be tested whether the number of mutations is significantly
greater than that expected under the background mutation rate using
a binomial test.

The methods used for calculating R vary. Ding et al. (2008)
calculated R in the following way. They mutate each nucleotide of
each codon in silico to determine whether it results in a non-silent or
silent mutation. They then calculate the average of each hypothetical
non-silent or silent mutation by weighting it according to its relative
frequency.

Some investigators (Sjoblom et al., 2006) further divide mutations
into several types according to the nucleotide and the neighboring
nucleotides of the mutations. They estimate a separate background
mutation rate for each mutation type by multiplying relative
frequencies of each mutation type by the background rate pn. They
then test each gene by using a likelihood ratio test to assess whether
the number of mutations occurring in the gene is unlikely under the
background mutation rates.

There are three shortcomings in the approaches previously
developed for identifying driver genes. First, previous approaches
ignore the fact that different types of mutations can have
different impact on proteins. Non-silent mutations include missense
mutations which change an amino acid to another amino acid,
nonsense mutations which change an amino acid to a stop codon,
mutations in splice sites and insertions or deletions (indels). The
indels can also be divided into two types namely, inframe indels and
frameshift indels according to whether it changes the reading frame.

Since frameshift indels and nonsense mutations change all the
amino acids that come after the amino acid where the mutation
occurred, they have the greatest impact on the protein function.
Mutations in splice sites also have strong impact since they disrupt
splicing. Also different types of missense mutations may have
different impact based on how similar are the chemical properties
of the original and new amino acids.

Several studies also have shown that the selection pressures vary
by mutation type and sequence location in cancer mutation datasets.
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Fig. 1. Histogram of the number of mutations per sample. The data are from
Ding et al. (2008) who sequenced 623 genes in 188 tumor samples.

Greenman et al. (2006) developed tests to examine the significance
of selection toward missense, nonsense and splice site mutations
in somatic cancer mutation datasets. They found that the selection
pressures for nonsense and splice mutations are much higher than
those for missense mutations. Also Radivojac et al. (2008) found
that somatic cancer mutation datasets have a significant enrichment
for mutations disrupting phosphorylation sites.

If two genes A and B have a similar number of mutations, but
all mutations in gene A are expected to affect its protein function
significantly while those in gene B are not, then the gene A is more
likely to be a driver gene than gene B. However, the current methods
are not able to differentiate genes A and B since they ignore the
information of mutation types.

A second limitation of previous approaches is that they ignore
the fact that different samples have different background mutation
rates. Tumors differ substantially with regard to the number of
somatic mutations accumulated. Samples are exposed to different
levels of mutagens (for example, smoking) and some samples have
mutations in genes that repair mutations. Therefore, some samples
have much higher background mutation rate than others. This can
be seen in Figure 1 for the data from Ding et al. (2008) who
sequenced 623 genes in 188 tumor samples to identify 1013 non-
silent mutations and 108 silent mutations. Figure 1 shows the
distribution of the number of mutations that occurred in each of
the 188 samples. It shows that the number of mutations per sample
ranges from 0 to 54.

If a gene has mutations only in the samples with high background
mutation rate, then those mutations are more likely byproducts of
the high background mutation rate rather than the cause of a cancer.
In contrast, if a gene has mutations only in the samples with low
background mutation rate, then the gene is more likely to be a driver
gene even if the number of mutations is small. If we assume the
same background mutation rate across samples, the analysis will
be biased toward falsely identifying as drivers those genes that have
mutations in highly mutated samples and falsely missing those genes

with a small number of mutations in samples with low mutation
rates.

Third, previous approaches ignore the fact that a different number
of non-silent mutations can occur at each base pair according to the
genetic code. For example, consider a codon TGG which encodes
the amino acid Tryptophan. Since this is the only codon encoding
Tryptophan, any mutation at any nucleotide of the codon would
change the amino acid. Therefore any mutation results in a non-
silent mutation. In contrast, six codons encode the same amino
acid arginine: AGA, AGG, CGA, CGG, CGC and CGT. Therefore
within the codon CGA, no non-silent mutations can occur at the third
position of the codon and only two non-silent mutations can occur
at the first position. If a protein A consists mostly of tryptophan,
and a protein B consists mostly of arginine, the gene A encoding the
protein A is susceptible to more non-silent mutations than the gene
B encoding the protein B. Thus, methods ignoring this difference
will tend to misclassify as drivers genes rich in codons with limited
redundancy and misclassify as non-drivers genes rich in codons with
substantial redundancy.

In this article, we propose and evaluate a new method for
identifying driver genes. In Section 2, we will define P-values for
testing whether a gene is a driver gene. In Section 3, we will evaluate
the new method using lung tumor genome sequences.

2 METHODS

2.1 Definition of P-values for identifying driver genes

For each gene, we test if the number of samples with ‘driver-like’ non-silent
mutations is higher than that expected by the background mutation model M.
Let

0 if no non-silent mutation occurred in sample j for gene i
Y=
1 if any non-silent mutation occurred in sample j for gene i

then Yj; is a Bernoulli random variable.
Define

5ij=P(Y;j=0[Mo).

Since we assume a different mutation rate for each sample, the probability
s;j varies across samples j=1,...,J. It is calculated from the background
mutation model which will be described in the Section 2.2.

‘We assign a score to every possible non-silent mutation according to
its expected impact on the protein function: higher score for mutations
with stronger impact. As will be shown, the order between scores rather
than the actual scores determines the test statistics. Therefore, one can
assign any score to each non-silent mutation to reflect the order of its
impact on the protein function. We assign scores so that they comply
with the following order: missense < inframe indel < mutation in splice
sites < frameshift indel =nonsense. We also assign different scores to
different types of missense mutations based on BLOSUMS0 matrix, which
is a matrix of scores for each of the 190 possible substitutions of the 20
standard amino acids.

Let Tj; be the maximum score of the non-silent mutations that occurred
in sample j for gene i. If no mutation occurred, let T;; =0. Define Fj;(x)=
P(Tjj <x|Y;;=1,Mp). We can obtain the distribution Fj; from the background
mutation model described in the Section 2.2.

Then,

log P(Y;j=yij, Ty > t;5,j=1,...,J [Mo)
J
= log [ [P(Tyj = t1¥; =i, Mo)P(Yys = y;;|Mo)

j=1
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J
= tog Ty (1 =)0 = Fy 1))

Jj=1

7 7
1—s;
= Zyif <log ( - Y > +log(1 7Fl‘j(fl‘j))> +Zlogs,~j
j=1 U

j=1

1—sjj

Sij

We use Z; = Zle Yii(log( )+log(1—F;i(Tj;))) as our test statistic and
define P-values by P(Z; <z |My), where z; is the observed value of Z;.
Z; can be interpreted as a sum of mutated sample indicators weighted by
log( 1:,;" )+log(1—F;(Tj)). Since sy; is larger than 0.5, 1:':"
and thus, the weights are negative. The larger the s;; and F;(T};), the smaller
the weight. Therefore, mutations with higher scores (stronger impact on the
protein function) occurring in samples with low mutation rates (samples with
large s;;) contribute more in decreasing Z; and thus, P-values.

We can generate the distribution of Z; under the background
mutation model by simulating Y; from Bernoulli(s;j) and T from
=)+
log(1—Fjj(Tj))). Then we can approximate the P-value P(Z; <z;|Mp) by
computing the tail area of this background distribution beyond the observed
value z; for each gene i.

is less than one

Fi for j=1,...,J and then calculating the sum of Yj(log(

2.2 Background mutation model

The most distinguishing features of our background mutation model are that
it does not assume separate mutation rates for non-silent and silent mutations
and that it assumes separate mutation rates for different samples. We assume
that each passenger mutation is generated from one background mutation
rate process and that whether the mutation is non-silent or silent depends on
the genetic code.

There are six types of mutations:

AT—G.C, A.:T—>C:G, A:T—>T:A
G.C—A:T, G:C—>T:A, G:C—C:G.

The transitions A:T— G:C and G:C — A:T change a purine to another
purine or a pyrimidine to another pyrimidine. The transversions change
a purine to a pyrimidine or vice versa. Because transitions occur more
frequently than transversions, we assume separate mutation rates for
transitions and transversions. Also it is generally observed that a mutation
occurs more often at C:G than A:T and that a C:G appearing in CpG
dinucleotides has a higher mutation rate than a C:G appearing in non-CpG
dinucleotides. Therefore, we assume a separate background mutation rate for
each combination of base pair types and CpG dinucleotides context.

We also assume that different tumor samples have different mutation rates.
To keep the number of parameters manageable, we assume that relative
frequencies of different types of mutations are same for each sample. Thus,
the mutation rate in sample j for mutation type m is defined as the product of
Pm, the ratio of mutation rate of the type m relative to the type 1 (A:T — G:C)
and g;, the mutation rate of the sample j for the mutation type 1 (Table 1).

To estimate the parameters in the background mutation model, we could
fit the model in Table 1 to the sequences for which silent mutations were
identified. (Most previous projects have evaluated silent mutations for only a
subset of the genes.) To estimate the background mutation rate for insertions
and deletions (indels), which are non-silent, however, we included in our
estimation genes which have at most one non-silent mutation across all
tumor samples; these genes are not likely to be related to tumorigenesis
and thus the non-silent mutations in these genes are likely to be passenger
mutations. However, since we selected these genes based on the total number
of mutations occurring in each gene, the estimated background rates for these
genes may be biased. Since the selection was based on the total number of
mutations, it is unlikely that the relative frequencies of different types of
mutations are subject to the bias, but the sample-specific mutation rates may
be. Let ¢ be the mutation rate of the sample j for mutation type 1 in the
selected genes. Then we assume qj’- =r-q;, where r is the selection bias and
q; is the unbiased sample-specific mutation rate.

Table 1. Background mutation rates

Mutation type Mutation type ID Mutation rate

A:T—G:C 1 qjp1
A:T—C:G 2 qjp2
A:T—T:A 2 qip2
C:G—T:A atnon CpG 3 qip3
C:G— A:T at non CpG 4 qip4
C:G— G:C atnon CpG 4 qjP4
C:G—T:A at CpG 5 q;jPs
C:G—A:T at CpG 6 qjPs
C:G—G:C at CpG 6 q;jP6
Inframe indels 7 qip1
Frameshift indels 8 q;ip8

*j is sample index.

Table 2. Definition of probabilities of X

gickpyI(keK) for Xj =sts
qjdipy I (k€K) for X =stv
gjrexpyI(keL) for X =nts
P(Xji)=1q gjrfipv I(keL) for Xj; =ntv
gjrp71(kel) for X =iid
qj rpgl(k € L) for Xjk =fid
1—gjay for Xjx =non

ag =(cypy, +dipv ) (k€ K)+r(expy, +fipvy +p7+p3)(kEL);

1(x), indicator function, 1 if x is true and O otherwise;

¢y, number of silent transitions possible at position k (0 or 1); dj, number of silent
transversions possible at position k£ (0, 1 or 2); e;, number of non-silent transitions
possible at position & (0 or 1); f;., number of non-silent transversions possible at position
k (0, 1 or 2); #;, mutation type ID for the transition at position & (1, 3 or 5); v, mutation
type ID for the transversion at position k (2, 4 or 6); non, no mutation; sts, silent
transition; stv, silent transversion; nts, non-silent transition; ntv, non-silent transversion;
iid, inframe indel; fid, frameshift indel.

To estimate the parameters r, g; and pi,...,ps, we first define the
position of base pairs across all the sequenced genes. Since we assume
that background mutation rates are independent of genes, we do not need
to differentiate genes. Therefore, we concatenate all the sequenced genes
and determine the position of each base pair from 1 to N, the total number
of base pairs that are sequenced. Let K denote the subset of positions of the
base pairs belonging to the genes used for silent mutation detection and let L
denote the subset of positions of the base pairs belonging to the genes which
have at most one non-silent mutation across all samples.

For position £ in genes for which silent mutations have been evaluated,
the probability that a silent transition of type i (second column in Table 1)
occurs in sample j equals gjcxp; where ¢ is 1 if a transition at position k
results in a silent mutation, otherwise cx is 0. The probability that a silent
transversion of type i occurs at that position equals g;dyp;, where dj. is the
number of silent transversions possible at position k (0, 1 or 2). The full set
of probabilities definitions are shown in Table 2 based on the indicators Xj,
which indicate the type of mutation occurring at position k in sample j. Since
any mutation is either a silent mutation or a non-silent mutation, cx +ex =1
(number of possible transition mutations) and dj +fx =2 (number of possible
transversion mutations). When a mutation occurs within splice sites, it is
considered to be non-silent, therefore ¢y =d, =0,ex =1,f; =2 if k belongs
to splice sites.

All of the constants shown in Table 2 can be determined from the gene
sequence and genetic code. However, the values are ambiguous in cases
where genes have several alternative transcripts, and where some base pairs
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belong to different codons in alternative transcripts. We describe how to
determine the values of the constants in such cases in the Supplementary
Material.

2.3 Estimation of parameters

We use the method of moments to estimate r and p,,. The process of obtaining
the method of moments estimates 7 and py, is described in the Supplementary
Material.

The estimation of g; is more complex because the number of base pairs
sequenced per sample is not sufficient to estimate the extremely small
mutation rate g; accurately. For example, no mutations were found for
many samples in the data from Ding et al. (2008). Therefore, the maximum
likelihood estimate of g; would be zero for those samples, which are
problematic point estimates. To improve the accuracy of the estimates, we
use empirical Bayes methods to estimate the distribution of g;. Empirical
Bayes methods borrow information from all the samples for estimating each
gj» therefore give more robust estimates of g;. (Casella, 1985)

We assume the prior distribution f of g; is uniform on (o, ). As estimates
of &, B, we use the values maximizing the marginal likelihood given the
estimates, 7 and p=(p1,p2,P3.P4.P5.P6:P7.P8)-

The posterior distribution of g; given the data Xj; for ke KUL,j=1,...,J
and the estimated parameters &, B, 7, f) is

hi(a)=>f(qjla.B) [] PXixlgj?.p)
keKUL

where the product is over all positions k, the probabilities P(Xjx Iq_,',?,fi) are
computed from the formulas in Table 2 and A is the normalizing constant.

We use the posterior distribution of ¢; in calculating s;; =P(Y;; =0|Mo)
rather than using the point estimates of g; to take into account the uncertainty
in the point estimate. Therefore,

s;j=P(Y;=0|Mo) =/h,(q_,-) [ [ —giburdg;
keG;

where G; is the subset of positions of the base pairs belonging to the gene i
and by =expy, +fiDv, +P7-+Ds. The integration with regard to the posterior
distribution of g; is performed numerically. The resulting values of s;; are
used as described in Section 2.1 for computing statistical significance.

The distributions Fjj(x)=P(T;; <x|Y;j=1,Mp) are also needed for
the significance tests used to identify driver genes and are computed
from:

ZkeGiP(Tj’k <x|Xjx =nts, ntv, iid, or fid)by
ZkeGi by

where T,./k is the score of the mutation occurring in position k& and

Fij(x)=

sample j. The distribution P(Tj/k <x|Xjx =nts, ntv, iid , or fid ) can be easily
calculated from the genetic code and background mutation model. The
process of the derivation of Fj(x) is explained in the Supplementary
Material.

3 RESULTS

We applied our method to the data of Ding er al. (2008).
They sequenced coding exons and splice donor/acceptor sites
(dinucleotides in the 5'/3’ ends of introns) of 623 genes in 188
samples from patients with lung adenocarcinoma to identify 1013
non-silent mutations. They selected a subset of 250 genes to identify
108 silent mutations for measuring a background mutation rate. The
table describing all the identified mutations is available in the paper
of Ding et al. (2008), but the patient-specific gene sequences are not.

Thus, we used the reference sequence of coding exons and splice
donor/acceptor sites (dinucleotides in the 5'/3’ ends of introns) of
the 623 genes from Ensembl release 46.

3.1 Simulation study

We first performed a simulation study to evaluate our method.
For the comparison with the method of Ding et al. (2008), we
did not include the mutation score T;j in the test statistics, that

is, we use the test statistic Zizzj!:l)’ij(log(l;s‘:’ )) instead of

i
2=, Yij(log(15*%) +log(1 - Fy(Ty))).

We generate simulated data based on the data of Ding et al. (2008).
We first generate passenger mutations by shuffling the locations of all
observed non-silent and silent mutations across the genes sequenced.
There are 1013 non-silent mutations observed in 623 genes and 108
silent mutations observed in 250 genes. For these mutations, we
change the base pair positions in which the mutation occurred as
follows: we randomly sample the base pair positions from the base
pair positions within the sequence of all genes, which correspond to
the same base pair types as the mutations. If a mutation occurred in
the base pair A, we sample its new base pair position from all the
base pair positions within the sequence of all genes corresponding
to a base pair A. If the base pair is G or C, we also restrict the
sampling by the CpG dinucletoide context. We then determine which
of these mutations are non-silent or silent according to the genetic
code. Since we randomly sample the base pair positions of all the
mutations, they become evenly spread across all genes.

To see the effect of variation of mutation rates across samples, we
change the sample ID in which mutations occurred by sampling a
new sample ID under two different distributions namely, moderate
sample variation and high sample variation.

The first distribution, moderate sample variation, is estimated
from the background mutations of the data from Ding ez al. (2008).
We sample each sample ID with the probability proportional to
the number of passenger mutations (silent mutations and non-silent
mutations observed in genes with at most one non-silent mutations)
that occurred in the sample. For the second distribution, high sample
variation, we increase the mutation rates of the 10 samples with
highest mutation rate by a factor of 10.

Finally, we make 20 driver genes by adding five non-silent
mutations to 20 selected genes.

In our simulations, we have used the true expected ratio of non-
silent to silent mutations (R) in applying the method of Ding et al.
(2008) because we did not have their software for estimating R. This
may somewhat overestimate the accuracy of their method.

Each simulation was repeated for 200 replications. The average
number of true and false positive driver genes claimed based on
P-value cutoffs of 0.005 and 0.01, respectively, are shown in Table 3.
Our method finds more true positives and fewer false positives than
the method of Ding er al. (2008). We did Wilcoxon signed rank
test of the null hypothesis that the distribution of number of true
or false positives from both methods are same and presented one-
sided P-values in the last column of Table 3. For moderate sample
variation, the P-values for false positives are 0.0001 and 0.0008, and
the P-values for true positives are less than 10~16. For high sample
variation, all the P-values are less than 10~16, This shows that the
difference in the number of true positives or false positives between
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Table 3. Result for simulated data

Sample Cutoff Average Our Ding’s P-value
variation number method method

TP 12.9 9.9 <le-16

Moderate 0.005 EP 13 17 L-04

TP 14.9 11.7 <le-16

0.01 FP 3 34 8e-04

. TP 13.4 9.9 <le-16

High 0.005 FP 0.2 2.0 <le-16

0.01 TP 15.1 11.7 <le-16

FpP 0.6 3.9 <le-16

TP, true positives; FP, false positives.

Table 4. Driver genes by new method

Gene name P-value
EGFR 0
CDKN2A 0

KRAS 0

STKI11 0

TP53 0

EPHA3 2e-06
NF1 2e-06
ATM 3e-06
RBI1 4e-06
APC 1.3e-05
INHBA 6.8e-05
ERBB4 0.000109
PTPRD 0.000145
FGFR4 0.000146
PTEN 0.000210
EPHAS 0.000237
NTRK3 0.000298
NTRK1 0.000298
KDR 0.000319
LRPIB 0.000518
PAK3 0.000750
NRAS 0.000848
LTK 0.000876
ZMYNDI10 0.001091
EPHA7 0.001116
MYO3B 0.001151
NTRK2 0.001322
TFDP1 0.001404

two methods is significant and it gets more significant as the sample
variation grows larger.

3.2 Results for the data of Ding et al. (2008)

We identified 28 genes as driver genes with the false discovery rate
(FDR) controlled at 5% using the Benjamini and Hochberg method.
These include EGFR, CDKN2A, KRAS, STKI11, TP53, EPHA3,
NF1, ATM, RB1, APC, INHBA, ERBB4, PTPRD, FGFR4, PTEN,
EPHAS, NTRK3, NTRK1, KDR, LRPIB, PAK3, NRAS, LTK,
ZMYNDI10, EPHA7, MYO3B, NTRK2 and TFDPI1. The P-values
of the selected genes are given in Table 4.

CDH11
PDGFRA
TFDP1
NTRK2
MYO3B
EPHA7
ZMYND10
LTK
NRAS
PAK3
LRP1B
KDR
NTRK1
NTRK3
EPHA5
PTEN
FGFR4
PTPRD
ERBB4
INHBA
APC

Gene

i 1.| n"'

KRAS
CDKN2A
EGFR

Sample

Fig. 2. Map of the 30 selected genes versus tumor samples. Tumor samples
with/without mutations in genes are labeled yellow/blue. The rows (genes)
are ordered according to the P-value obtained by our method. The columns
(samples) are ordered according to the total number of genes with non-
silent mutations (among all 623 genes) in the corresponding sample. The
red/blue/yellow banner across the left side of the map shows the difference
between selected genes by the two methods: our method and the method of
Ding et al. (2008). The genes covered by the red bar are the additional genes
found by the method of Ding et al. (2008) and those covered by the yellow
bar are the additional genes found by our method. The genes covered by the
blue bar are those which both methods find significant.

By the method of Ding et al. (2008), 22 genes were found to be
significant at the 5% FDR level. These genes include two genes that
we do not find significant. Our method finds eight genes, which they
do not find significant. We drew a map of the genes selected by each
method versus tumor samples in Figure 2. The genes are ordered
by the P-value obtained by our method and samples are ordered
according to the total number of genes with non-silent mutation
(among all 623 genes). The genes indicated by the red bar are those
which Ding et al. (2008) find significant but we do not. The genes
indicated by the yellow bar are those which we find significant but
they do not. The genes indicated by the blue bar are those which
both methods find significant.

For most of the well known oncogene and tumor suppressor
genes in the dataset we analyzed (EGFR, CDKN2A, KRAS, STK11,
TP53, NF1, RB1 PTEN, NRAS), the mutations occurring in them
have very high mutation scores. For example, in STK11, most
mutations are frameshift indels, nonsense or mutations in splice sites.
Even the missense mutations represent poorly conserved amino acid
changes. In RB1, all seven mutations that occurred in the gene are
either frameshift indel, nonsense or mutations in splice sites. This is
consistent with our scoring system that mutations in driver genes will
tend to have strong impact on protein functions. By incorporating
mutation scores in calculating P-values, driver genes have smaller
P-values and thus are better identified. For the well- known driver
genes EGFR, CDKN2A, KRAS, STK11, TP53 which already have
computed P-values of zero due to frequent mutations, the effect
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of scoring makes little difference. But for genes like NF1, RB1,
APC, INHBA, ERBB4, FGFR4, PTEN and NRAS, their P-values
are about one-third on average of the P-values calculated without
incorporating the mutation scores. Most of those genes are well-
known cancer driver genes, and incorporating mutation scores helps
in their identification.

Not having mutations with high scores does not preclude a gene
being a potential driver gene, but these cases tend to be infrequently
mutated genes that occur in samples with large mutation rates as was
the case for CDH11 and PDGFRA. These two genes are selected to
be significant by Ding’s method, but not by our method. Figure 2
shows that the mutations in these genes are clustered in the highly
mutated samples except one in PDGFRA. However, most mutations
in PDGFRA are missense mutations with low mutation scores,
offsetting the effect of low mutation rate to the test statistics of
PDGFRA. Also, some of the mutations in both genes occur in the
same sample, therefore, our method which is based on the number
of samples with mutations rather than the total number of mutations
assigned larger P-values to them than the method of Ding et al.
(2008).

There are eight genes beside the yellow bar. The gene with the
smallest P-value is PTEN, a well-known tumor suppressor gene.
Ding et al. (2008) did not find it significant because the total number
of mutations is so small (four). However, since each of the four
mutations occurred in different samples with low mutation rates
and the score of each mutation is high (one nonsense mutation and
three missense mutation with high score), our method could find it
significant.

The gene with the second smallest P-value is NRAS, a well-
known oncogene. Although there were only three total mutations in
this gene, all of them are the same missense mutation changing
glutamine to leucine, which has a high score. Also, one of the
mutation occurred in a sample with low mutation rate, thus we could
find it significant.

The gene ZMYND10 is a candidate tumor suppressor gene whose
association with carcinomas is suggested by Agathanggelou er al.
(2003); Cho (2007); Lerman and Minna (2000); Marsit et al. (2005);
Qiu et al. (2004).

The gene EPHA7 is a member of the ephrin receptor family and
is known to be related to oncogenesis (Kiyokawa et al., 1994). The
other two members EPHA3 and EPHAS are also selected to be
significant by both methods, implying that EPHA7 is potentially
involved in oncogenesis.

NTRK2 is a member of the neurotrophic tyrosine receptor kinase
(NTRK) family, which phosphorylates members of the MAPK
pathway. It is known to be potentially implicated in oncogenesis
(Marchetti et al., 2008) and also the other two members of the NTRK
receptor family, NTRK1 and NTRK3 are selected to be significant by
both methods, supporting the implication of NTRK?2 in oncogenesis.

TFDP1 is a transcription factor and its overexpression or
amplification is known to be associated with carcinomas (Melchor
et al., 2009; Yasui et al., 2003). The role of LTK and MYO3B in
oncogenesis is not well known.

4 DISCUSSION

We have developed a new method for identifying driver genes
that has several methodological advantages compared with the
previously used methods.

First, we assign scores to non-silent mutations according to their
expected impacts on the protein function so that the genes with more
‘driver-like’ mutations will get smaller P-values.

Second, we permit each sample to have a different background
mutation rate. This has the effect of reducing the false positives and
increasing true positives, which was confirmed by the simulation
study.

Third, instead of assuming separate background mutation rates
for non-silent and silent mutations, we assume that each passenger
mutation is generated from one background mutation rate process
and that whether the mutation is non-silent or silent depends on
the genetic code. Thus, our model accounts for the variable number
of possible non-silent mutations that can occur at each base pair
according to the genetic code. This takes into account the difference
in the number of possible non-silent mutations between genes
according to the codon usage within genes.

Fourth, we take into account uncertainties in the background
mutation rate by using empirical Bayes methods.

These methodological advances contributed to identifying a
different set of driver genes when compared with those identified
by Ding et al. (2008). First, we did not find the genes CDH11 and
PDGFRA which Ding et al. (2008) found significant. These genes
are not selected by our method because they are mainly mutated in
the highly mutated samples and the scores of the mutations are not
high. Second, we found PTEN, NRAS, LTK, ZMYND10, EPHA7,
MYO3B, NTRK2 and TFDP1, which Ding et al. (2008) did not find
significant. It shows that our method is more sensitive in finding
genes whose total number of mutations is small.

Although we believe that our method provides an improvement
over the previous methods, there is room for improvement by
extending our approach. First, we measure the functional impact of
mutations by the significance of the change to amino acids caused
by the mutation. However, the functional impact is also dependent
on the position in which a mutation occurs. For example, all three
mutations in NRAS occurred in the exact same base pair position,
which implies that the mutation in the specific position is crucial
to the function of the protein. If a score for each position can be
estimated that measures the significance of the position in protein
function, it can be used in our test statistics in the same way as the
mutation score Tj;.

Second, the current scoring system which assigns mutation
scores in the order: missense mutation < inframe indel < mutation
in splice sites < frameshift indel = nonsense mutation may be biased
toward identifying tumor suppressor genes over oncogenes. Loss-of-
function mutations such as frameshift indels or nonsense mutations
occur more frequently in tumor suppressor genes than in oncogenes.
Our use of the BLOSUMS80 matrix to refine the scoring of missense
mutations helps in the identification of new oncogenes. Alternative
scoring systems can be used, however, to increase sensitivity for
identifying oncogenes. For example, we can assign the same scores
as the current method to the missense mutations, but reduced scores
to indels, mutation in splice sites or nonsense mutations.

Third, we may refine our background mutation model in Table 1
so that all six types of mutations, A:T— G:C, A:T— C:G, A:
T—->T:A,G:C—A:T, G:C—T:A, G:C— C:G have separate
mutation rates. We separate the rates of mutations according to the
mutation types (transition or transversion), base pair types (A:T or
G:C) and their context (CpG dinucleotide contexts). Therefore, we
did not separate the rates of the two types of mutation for each
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transversion: A:T — C:G, A:T — T:A for the transversion at A:T
and C:G—A:T, C:G— G:C for the transversion at C:G in non-
CpG or in CpG. However, if the two types of mutations for each
transversion have quite different mutation rates, it may induce bias.
Therefore, we evaluated a model in which each of them has a
separate mutation rate using the simulated data generated described
in Section 3.1. For 200 repeated simulations, we calculated the
average number of true and false positives for this method. When
compared with the original method, the new model increased true
positives as well as false positives. Supplementary Table S1 shows
these results.

For larger datasets, one could refine our background mutation
model to differentiate coding and non-coding strands. Currently,
we assume that the mutation rate at the base pair A:T for example
is same whether A is in the coding strand or 7 is in the coding
strand. Using separate mutation rates according to the coding and
non-coding strand, however, will increase the number of parameters
by almost 2-fold, and therefore will be feasible only for the large
datasets.

Fifth, we did not take into account correlations among mutations
in identifying driver genes. Indeed, none of the existing methods for
identifying driver mutations that we are aware of utilize estimates
of synergism or antagonism for pairs of mutations. However, strong
positive or negative correlations between mutations in several pairs
of genes have been observed. Therefore, one could attempt to utilize
the correlation structure among mutations in identifying driver
genes.

Finally, one might combine both copy number variation and
sequencing data to identify driver genes. In this article, we used
only genomic sequence changes to identify driver genes. However,
change of protein functions related to oncogenesis are frequently
caused by copy number variation. Therefore, it is desirable to
integrate both copy number variation and sequence changes to
identify driver genes if both data are available. Our method can
be extended to include copy number variation in the test statistics;
we can test for each gene if the number of samples with ‘driver-like’
non-silent mutation or copy number variation is higher than that
expected by the background mutation model.

The analysis of tumor sequencing data is of key importance
for understanding oncogenesis, identifying molecular targets and
personalizing therapy. Learning to read the tumor genome is
complex, however, and new methods of analysis are needed. We
believe that methods such as those we have described that account
for functional impact of mutations, sample variation in mutation

rates and the redundancy of the genetic code will be useful for the
identification of genes that drive the pathogenesis of cancer.
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